

1

Light-Al Interaction: Bridging Photonics and Al with Cross-Layer Hardware/Algorithm Co-Design

Jiaqi Gu^{1,2}, Hanqing Zhu¹, Chenghao Feng^{1,3}, Ray T. Chen¹, David Z. Pan¹

¹The University of Texas at Austin, ²Arizona State University, ³Alpine Optoelectronics <u>jqgu@utexas.edu; http://jqgu.net</u>

This work was supported in part by AFOSR MURI

June 15, 2023

What is This Talk About: Overview of Optical Al

Photonic AI Computing Basics

- Principle: modulation (encode), interference (MVM), photodetection (readout)
- Good at <u>ultra-fast</u> (10-100ps), <u>parallel</u> linear operations in the <u>analog</u> domain
- 10 TOPS/W (SoTA) → 1M TOPS/W (potential)

One-shot computing at speed-of-light!

Photonic AI is Booming

Photonic Neural Network Trends in Academia

Foundry / EPDA Support in Industry

Photonic AI is Booming

Photonic Neural Network Trends in Academia

Foundry / EPDA Support in Industry

Virtuous Cycle: Photonics for Al +> Al for Photonics

Starred 205

Customized Optical Neural Network Design

ONN On-Chip Training Algorithms

ML-Assisted Photonic Design Automation

Customized Optical Neural Network Design

ONN On-Chip Training Algorithms

ML-Assisted Photonic Design Automation

From GEMM To Specialized Subspace Linear

- Overparameterized DNN → GEMM is not necessary → "circuit compression"
- Large universal $U\Sigma V$ MZI array \rightarrow Compact subspace $U'\Sigma V'$ butterfly mesh

J. Gu, Z. Zhao, C. Feng, M. Liu, R.T. Chen, D.Z. Pan, "Towards Area-Efficient Optical Neural Networks: An FFT-based Architecture," **ACM/IEEE ASP-DAC**, 2020. **Best Paper Award**

From GEMM To Specialized Subspace Linear

- Overparameterized DNN → GEMM is not necessary → "circuit compression"
- Large universal $U\Sigma V$ MZI array \rightarrow Compact subspace $U'\Sigma V'$ butterfly mesh

J. Gu, Z. Zhao, C. Feng, M. Liu, R.T. Chen, D.Z. Pan, "Towards Area-Efficient Optical Neural Networks: An FFT-based Architecture," **ACM/IEEE ASP-DAC**, 2020. **Best Paper Award**

Photonic Neural Chip Tapeout & Demonstration

C. Feng*, J. Gu* (co-first), H. Zhu, Z. Ying, Z. Zhao, D.Z. Pan, R.T. Chen, "A compact butterfly-style silicon 11 photonic-electronic neural chip for hardware-efficient deep learning", **ACS Photonics**, Nov. 30, 2022.

More Customized ONN Designs Beyond GEMM

• Specialized circuits for hardware-efficient subspace linear op

Metalens-based diffractive ONN

[Wang+, *Nat. Commun* 2022]

Fourier lens photonic Conv [Li+, HPCA 2023]

◆ Customized devices beyond 1 MAC/device → single-device vector/MVM unit

Customized Optical Neural Network Design

ONN On-Chip Training Algorithms

ML-Assisted Photonic Design Automation

Inference -> Training: Self-Learnable AI Engine

Why on-chip training? reliability, adaptability, efficiency, privacy...

<u>Challenges</u>

- > No access to intermediate states or full gradients (U/V) are blackbox)
- Noisy circuits (randomness)
- Algorithm must be **simple** enough to be run on chip

Efficient On-Chip Training Protocols

- >10,000× trainability1+30× efficiency1: Customize algorithm for the hardware
- Utilize optics reciprocity to calculate <u>subspace</u> 1st-order gradients with <u>sparsity</u>

J. Gu, Z. Zhao, et al., FLOPS, ACM/IEEE Design Automation Conference (DAC), 2020 (Best Paper Finalist) (Best Poster Award)
J. Gu, C. Feng, et al., Mixed-Train, Association for the Advancement of Artificial Intelligence (AAAI), 2021
J. Gu, H. Zhu, et al., L2ight, Conference on Neural Information Processing Systems (NeurIPS), 2021

Customized Optical Neural Network Design

ONN On-Chip Training Algorithms

ML-Assisted Photonic Design Automation

Photonics for AI

Light-AI Virtuous Cycle

Al for Optical Simulation [NeurOLight, Gu+, NeurIPS'22]

Avoid slow simulation in the loop → ML-enabled fast Maxwell equation solving

J. Gu, Z. Gao, C. Feng, H. Zhu, R.T. Chen, D.S. Boning, D.Z. Pan, "NeurOLight: A Physics-Agnostic 18 Neural Operator Enabling Parametric Photonic Device Simulation," **NeurIPS** 2022. (**Spotlight**)

Auto-Design for Photonic Circuits [ADEPT, Gu+, DAC'22]

♦ Inefficient manual/heuristic design → Automated circuit topology search

Automatic Differentiable DEsign of Photonic Tensor Cores," **DAC**, 2022 (**Best-in-Track**)

The Future of Photonics↔AI is Bright

HW/SW co-design for optical AI infer. /train + ML for optics

Co-Design Methodology

SOFTWARE

ONN Architecture Search

<u>Future</u>: mem/arch, system integration, advanced app.

ONN Design Stack Optical Neural Architecture Design ONN Model Optimization Deployment & On-Chip Training GPU-Backend

 $1 \, \text{mm}$

Acknowledgment

Photonics for Al Al for Photonics

Hands-on Tutorial on TorchONN @ Design Automation Conference (DAC) July'23, Moscone Center

Contributors: Jiaqi Gu, Chenghao Feng, Hanqing Zhu, Zheng Zhao, Zhoufeng Ying, Ray T. Chen, David Z. Pan

Funding Agency: AFOSR MURI

SuperMesh Search

ADEPT: SuperMesh Training

ONN Training

SuperMesh Warmu

Thank You

Q & A