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What is This Talk About: Overview of Optical AI
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Design Integrated Photonics Hardware 

for AI / ML Computing

Apply AI / ML for Photonic Hardware 

Design Automation



Photonic AI Computing Basics
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Computing Primitives

⧫ Principle: modulation (encode), interference (MVM), photodetection (readout)

⧫ Good at ultra-fast (10-100ps), parallel linear operations in the analog domain

⧫ 10 TOPS/W (SoTA) → 1M TOPS/W (potential)

Scalar Multiply 

𝑦 = 𝑎 ⋅ 𝑥

Photonic Implementation

𝑥 𝑦

Light Modulation

𝑎

Mach-Zehnder Interferometer (MZI)

𝑥1

𝑥2

𝑦1

𝑦2
𝑹 2 = 𝑹 2

2×2 Unitary Matrix Multiply

𝒚 = 𝑹 2 × 𝒙

One-shot computing at speed-of-light!

𝒙 

(light in)
𝒚 

(light out)

Photonic Tensor Core (PTC)

𝑾𝒙 𝒚

𝑾 𝚽 = 𝑼𝚺𝑽∗

𝑽∗ 𝑼𝚺

=

Matrix-Vector Multiply (MVM)

𝒚 = 𝑾 × 𝒙



Photonic AI is Booming
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Photonic Computing Chip Designs

Foundry / EPDA Support in IndustryPhotonic Neural Network Trends in Academia

[SciRep’17]

[Nat. Photon’17]

[ASP-DAC’20, TCAD’20, 

ACS Photonics’22]

[DATE’20]

[Nature’19]

[ASP-DAC’19]

[DATE’21, TCAD’22]

[APR’20]

[Nature’21]

[HPCA’20]

[PhysRev’19]
[Nature’21]

[Nat. Comm.’22]

[Nat. Comm.’22]

Electronic-Photonic Design Automation Tools

PDK / Tape-out / Packaging Support

[HPCA’23]



Photonic AI is Booming
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Photonic Computing Chip Designs

Foundry / EPDA Support in IndustryPhotonic Neural Network Trends in Academia

[SciRep’17]

[Nat. Photon’17]

[ASP-DAC’20, TCAD’20, 

ACS Photonics’22]

[DATE’20]

[Nature’19]

[ASP-DAC’19]

[DATE’21, TCAD’22]

[APR’20]

[Nature’21]

[HPCA’20]

[PhysRev’19]
[Nature’21]

[Nat. Comm.’22]

[Nat. Comm.’22]

Electronic-Photonic Design Automation Tools

PDK / Tape-out / Packaging Support

Hardware/Software Co-Design 

+ Intelligent Design Automation

[HPCA’23]Challenging to Design Scalable, Robust & Adaptive 

Photonic ML Computing Platforms



Virtuous Cycle: Photonics for AI ↔ AI for Photonics

Area Efficiency Adaptability Robustness

Photonic 

Computing 

Hardware 

Design

Circuit-Model 

Co-Optimization

Deployment & 

Application

Photonic AI 

Design Stack
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Work & Contributions

OSNN: Butterfly-style ONN

[     ASP-DAC’20 BPA, TCAD’20, ACS Photonics’22] (Tape-out)

Robust ONN, Tutorial

[ICCAD’19,DATE’20] [TCAS II’21]

SqueezeLight, O2NN

[DATE’21] (Tape-out) [DATE’21]

FLOPS, MixedTrain: Zeroth-order On-chip Train

[     DAC’20, BPC] [     NSF WS BPA] [AAAI’21]

Model Compression

[NeurIPS’22 MLSys, Spotlight]

Optical RNN, Transformer

[CLEO’20] [MLSys SNAP’23]

PCM-ONN 

[ASP-DAC’22, TCAD’22]

ADEPT

[DAC’22] (Best-in-Track)

Photonics+MTJ

[ICCAD’22]

NeurOLight

[NeurIPS’22, Spotlight]

L2ight: Scalable On-chip Train [NeurIPS’21]

Mem-Efficient

[ICCV’21]

Open-Source Release

Publications: >30 in CAD, ML, Photonics Communities
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⧫ Customized Optical Neural Network Design

⧫ ONN On-Chip Training Algorithms

⧫ ML-Assisted Photonic Design Automation

Outline

𝒙 𝑾 𝚽𝒕+𝟏

= 𝑾 𝚽𝐭 + 𝚫𝐖
𝒚

𝜹𝒚
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⧫ Customized Optical Neural Network Design

⧫ ONN On-Chip Training Algorithms

⧫ ML-Assisted Photonic Design Automation

Outline

𝒙 𝑾 𝚽𝒕+𝟏

= 𝑾 𝚽𝐭 + 𝚫𝐖
𝒚

𝜹𝒚



From GEMM To Specialized Subspace Linear
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⧫ Overparameterized DNN → GEMM is not necessary → “circuit compression”

⧫ Large universal 𝑼𝜮𝑽 MZI array → Compact subspace 𝑼′𝜮𝑽′ butterfly mesh

Instead of having general matrices…

Subspace matrices

Large MZI array

𝒪(𝑛2) MZIs

Compact 

butterfly mesh

𝒪(𝑛 log 𝑛) basic 

devices

J. Gu, Z. Zhao, C. Feng, M. Liu, R.T. Chen, D.Z. Pan, “Towards Area-Efficient Optical Neural 

Networks: An FFT-based Architecture,” ACM/IEEE ASP-DAC, 2020. Best Paper Award

50/50 coupler

𝑒𝑗𝜙phase shifter 

Break it to basic devices

𝑼′𝚺𝑽∗′

𝑽∗ 𝑼𝚺

=

𝑂 2𝑛2

𝑂 𝑛2 log2 𝑘 /𝑘

𝑾𝑖𝑗 × 𝒙𝒋

ℱ−1 ℱ 𝒘𝒊𝒋 ⊙ ℱ 𝒙𝒋



From GEMM To Specialized Subspace Linear
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⧫ Large universal 𝑼𝜮𝑽 MZI array → Compact subspace 𝑼′𝜮𝑽′ butterfly mesh
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butterfly mesh
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J. Gu, Z. Zhao, C. Feng, M. Liu, R.T. Chen, D.Z. Pan, “Towards Area-Efficient Optical Neural 

Networks: An FFT-based Architecture,” ACM/IEEE ASP-DAC, 2020. Best Paper Award

50/50 coupler

𝑒𝑗𝜙phase shifter 

Break it to basic devices

𝑼′𝚺𝑽∗′

𝑽∗ 𝑼𝚺

=

𝑂 2𝑛2

𝑂 𝑛2 log2 𝑘 /𝑘

𝑾𝑖𝑗 × 𝒙𝒋

ℱ−1 ℱ 𝒘𝒊𝒋 ⊙ ℱ 𝒙𝒋

Trade redundant matrix expressivity for 

higher hardware efficiency



Photonic Neural Chip Tapeout & Demonstration
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4×4 butterfly tensor core

horse

>85% accuracy

ResNet-20 (0.27M #param) CIFAR-10

3-bit weight resolution

Fixed butterfly transform

 

96.5% accuracy

VGG8 (4M #param) COVID Chest X-ray

3-bit weight resolution

Fixed butterfly transform
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Peak compute density & energy efficiency

• Our ONN         (225 TOPS/mm2, 9.5 TOPS/W)

• NVIDIA A100           (0.76 TOPS/mm2, 1.56 TOPS/W) 

• Google TPUv4         (0.69 TOPS/mm2, 1.62 TOPS/W)

• 40nm RRAM Accel  (0.03 TOPS/mm2, 2.20 TOPS/W) [Giordano+, VLSI’21]

C. Feng*, J. Gu* (co-first), H. Zhu, Z. Ying, Z. Zhao, D.Z. Pan, R.T. Chen, “A compact butterfly-style silicon 

photonic-electronic neural chip for hardware-efficient deep learning”, ACS Photonics, Nov. 30, 2022.



More Customized ONN Designs Beyond GEMM
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⧫ Specialized circuits for hardware-efficient subspace linear op

⧫ Customized devices beyond 1 MAC/device → single-device vector/MVM unit

Metalens-based diffractive ONN 

[Wang+, Nat. Commun 2022]
Tensorized MZI-ONN 

[Xiao+, APL Photonics 2021]

Fourier lens photonic Conv 

[Li+, HPCA 2023]
Auto-designed PIC topology

[Gu+, DAC 2022]

𝑦 ∝ 𝑓(σ𝑖=0
𝑘−1 𝑤𝑖𝑥𝑖

2) 𝑦 ∝ cos(σ𝑖=1
2𝑘 𝑤𝑖𝑥𝑖

2)

𝑥1 𝑥2 𝑥3 𝑥𝑘

𝑥𝑘+1 𝑥𝑘+2 𝑥𝑘+3 𝑥2𝑘

𝑤1 𝑤2 𝑤3 𝑤𝑘

𝑤𝑘+1 𝑤𝑘+2 𝑤𝑘+3 𝑤2𝑘

⋯

⋯

𝑓 𝒙, 𝝐 = 𝑾 𝝐 𝒙

MORR: [Gu+, DATE’21,TCAD’22]

w0 w1

w2wk-1...

x0 x1

x2xk-1

Input 
Port

Through 
Port

MOMZI: [Feng+, Pho.West’23, arXiv’23] MOMMI: [Gu+, under sub., arXiv’23]
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⧫ Customized Optical Neural Network Design

⧫ ONN On-Chip Training Algorithms

⧫ ML-Assisted Photonic Design Automation

Outline

𝒙 𝑾 𝚽𝒕+𝟏

= 𝑾 𝚽𝐭 + 𝚫𝐖
𝒚

𝜹𝒚



Inference → Training: Self-Learnable AI Engine

⧫ Why on-chip training? reliability, adaptability, efficiency, privacy…

⧫ Challenges

› No access to intermediate states or full gradients (𝑼/𝑽 are blackbox)

› Noisy circuits (randomness)

› Algorithm must be simple enough to be run on chip

14

...

...

×𝑽∗(𝚽𝐕) 𝑼(𝚽𝐔)𝚺

?

?

? ?

Buffer Control

PTCIO IO

Buffer Control

PTCIO IO

Buffer Control

PTCIO IO

Buffer Control

PTCIO IO

Photonic AI Accelerator



Efficient On-Chip Training Protocols

15

⧫ >10,000× trainability↑+30× efficiency↑: Customize algorithm for the hardware

⧫ Utilize optics reciprocity to calculate subspace 1st-order gradients with sparsity

J. Gu, Z. Zhao, et al., FLOPS, ACM/IEEE Design Automation Conference (DAC), 2020 (Best Paper Finalist) (Best Poster Award)

J. Gu, C. Feng, et al., Mixed-Train, Association for the Advancement of Artificial Intelligence (AAAI), 2021

J. Gu, H. Zhu, et al., L2ight, Conference on Neural Information Processing Systems (NeurIPS), 2021
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Gradient-free Opt.

Small ONNs

100 #params

Subspace optimization

Million-parameter ONNs

L2ight
[Nat. Pho’17] [OE’19] Our contributions

Zeroth-order 

gradient 

descent 

Sparse 

coordinate 

descent
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⧫ Customized Optical Neural Network Design

⧫ ONN On-Chip Training Algorithms

⧫ ML-Assisted Photonic Design Automation

Outline

𝒙 𝑾 𝚽𝒕+𝟏

= 𝑾 𝚽𝐭 + 𝚫𝐖
𝒚
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Photonics for AI

AI for Photonics

Light-AI 

Virtuous Cycle

Manual Design 

Standard Devices

Automated Photonic 

IC Design

?
Customized Photonic 

Structure

AI-Enabled



Light 

Source 

𝐽

Control 

Signals 𝜃
Light 

Field 𝐻(𝜃, 𝐽)?

⧫ Avoid slow simulation in the loop → ML-enabled fast Maxwell equation solving

AI for Optical Simulation [NeurOLight, Gu+, NeurIPS’22]

18J. Gu, Z. Gao, C. Feng, H. Zhu, R.T. Chen, D.S. Boning, D.Z. Pan, “NeurOLight: A Physics-Agnostic 

Neural Operator Enabling Parametric Photonic Device Simulation,” NeurIPS 2022. (Spotlight)

PDE encoding + efficient neural operator + physics-augmented training

>200× speedup: 

Fast inference (<10 ms)

120 FPS

One-shot batched prediction on parametric Maxwell Eq. solutions

Obtain customized 

device behavior



⧫ Inefficient manual/heuristic design → Automated circuit topology search

Auto-Design for Photonic Circuits [ADEPT, Gu+, DAC’22]

19

Discrete → Continuous & Differentiable

Auto adapt to PDK and chip constraint

2-30× smaller 

More noise-robust

J. Gu, H. Zhu, C. Feng, Z. Jiang, M. Liu, S. Zhang, R.T. Chen, D.Z. Pan, “ADEPT: 

Automatic Differentiable DEsign of Photonic Tensor Cores,” DAC, 2022 (Best-in-Track)



Photonics for AI 
AI for Photonics

JeremieMelo/pytorch-onn

ONN Architecture:   FFT-ONN

On-Chip Learning:   L2ight

Automated PIC Design: ADEPT

Robust Photonic In-Mem Computing: ELight

Torch
ONN
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The Future of Photonics↔AI is Bright

Hands-on Tutorial on TorchONN @
Design Automation Conference 
(DAC) July’23, Moscone Center

⧫ HW/SW co-design for optical AI infer. /train + ML for optics

⧫ Future: mem/arch, system integration, advanced app.

https://github.com/JeremieMelo/pytorch-onn
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Thank You

Q & A
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