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ABSTRACT
In the post Moore’s era, conventional electronic digital computers have encountered escalating challenges in
supporting massively parallel and energy-hungry artificial intelligence (AI) workloads, which raises a high de-
mand for a revolutionary computing solution. Optical neural network (ONN) is a promising hardware platform
that could represent a paradigm shift with its ultra-fast speed, high parallelism, and low energy consumption.
However, designing photonic computing hardware encounters significant challenges in area scalability, noise
robustness, adaptability, and design efficiency. In this paper, we present a holistic solution with state-of-the-
art cross-layer co-design methodologies towards scalable, robust, and self-learnable integrated photonic neural
accelerator designs across the circuit, architecture, and algorithm levels. We will introduce novel ONN archi-
tectures with customized circuit and device designs to enable NN inference acceleration, efficient ONN on-chip
training algorithms that enable self-learnable photonic AI engines, and AI-assisted automated photonic inte-
grated circuit (PIC) design methodology to form a virtuous cycle of photonics for AI and AI for photonics. Our
proposed photonic AI design stack is integrated into our open-source PyTorch-centric ONN library TorchONN
to construct customized photonic AI engine designs with high-performance training and optimization facilities.

1 INTRODUCTION

Conventional computing solutions of digital electronics
have become a limiting factor in certain domains, most
notably intelligent information processing. The prolifer-
ation of big data and artificial intelligence (AI) has mo-
tivated the investigation of next-generation specialized AI
hardware to support low-power, low-latency machine in-
telligence. In recent years, AI computing platforms based
on integrated neuromorphic photonics are booming due to
the ultra-high bandwidth, sub-nanosecond latency, and sub-
fJ/MAC energy efficiency of optics. The current optical-
electronic hybrid computing hardware can already real-
ize state-of-the-art (SoTA) energy efficiency of around 10
TOPS/W. The theoretical limits of full-optical chips can
further boost the efficiency to 1 million TOPS/W, which
is 5 orders of magnitude higher than the current SoTA
platforms. Such emerging analog photonic AI hardware
can make transformative impacts in future datacenters, au-
tomotive, military applications, smart sensing, and intel-
ligent edge, enabling foundational breakthroughs in real-
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time perception, control, decision-making, and learning.
The early research efforts focus on diffractive free-space
optical computing, optical reservoir computing (Brunner
et al., 2013), and spike processing (Tait et al., 2014; Rosen-
bluth et al., 2009) to achieve optical multi-layer percep-
trons (MLPs). Recently, the integrated optical neural net-
works (ONNs) have attracted extensive research interest
given their compactness, energy efficiency, and electron-
ics compatibility (Shen et al., 2017; Cheng et al., 2020;
Wetzstein et al., 2020; Shastri et al., 2021), including co-
herent photonic tensor cores based on broadband devices,
e.g., MZIs (Shen et al., 2017), phase shifters (Feng et al.,
2022), MMIs, star-couplers (Zhu et al., 2022), and met-
alens (Wang et al., 2022), and multi-wavelength designs
based on micro-ring resonators (Tait et al., 2017; Liu et al.,
2019; Gu et al., 2021b), frequency microcomb (Xu et al.,
2021), and phase change materials (Miscuglio & Sorger,
2020; Feldmann et al., 2021).

However, designing such emerging photonic AI acceler-
ators have several major challenges that may hinder the
practical application of optical AI in the real world. The
first challenge is the area scalability due to the large spatial
footprint of photonic devices. The packing density of cur-
rent photonic integrated circuits (PICs) is not comparable
to electronic digital chips. More advances in customized
devices and novel circuit design methodologies are needed
to achieve breakthroughs in scalability. The second chal-
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Figure 1: Left 1: Our butterfly-style photonic neural chip (Gu et al., 2020b;c; Feng et al., 2022). Left 2: Compute density comparison.
Right 1 and 2: Measured predictions on CIFAR-10 and Chest X-ray Covid (Chowdhury et al., 2020) detection tasks.

lenge is the reliability concerns of photonic analog comput-
ing. Due to process variation, environmental changes, and
various on-chip noises, the fidelity of the computing results
from the photonic AI engines is rather limited. Device-
circuit-model co-optimization is necessary to minimize its
sensitivity to noises and variations toward robust and re-
liable photonic AI hardware. Another critical challenge
for current optical AI is the training difficulty in adapting
the computing engine to changing workloads and environ-
ments. The lack of local learnability or self-learnability
could disable many important on-device learning applica-
tions for the future intelligent edge, e.g., lifelong learning,
transfer learning, online adaptation, etc. Moreover, the de-
sign efficiency of photonic computing hardware is often
limited by traditional manual design flows, which lack in-
telligence or automation to speed up the development clo-
sure and explore the huge design space for better design
quality. The key solution to resolving the above challenges
is cross-layer hardware/algorithm co-design and intelligent
design automation. The following section will provide
an overview of light-AI interaction and a full-stack auto-
mated co-design solution, including (1) specialized pho-
tonic AI hardware designs, (2) scalable on-chip training
frameworks, and (3) applying ML for future photonic hard-
ware design automation flow.

2 SCALABLE, ROBUST, AND ADAPTIVE
PHOTONIC AI PLATFORM

2.1 Hardware-Efficient Butterfly-Style Photonic
Neural Accelerator

Integrated photonic processors (Shen et al., 2017) have
been demonstrated to accelerate general matrix multi-
plication (GEMM), targeting a photonic substitution of
GPUs/TPUs. However, the large spatial footprint of pho-
tonic circuits is the bottleneck for further scaling. Be-
sides the continuous miniaturization from device shrink-
ing, we propose to push the limit of scalability by design-
ing specialized photonic circuits to trade redundant ma-
trix expressivity for higher hardware efficiency. To avoid
using quadratically many MZIs to build a universal pro-

grammable linear unit for GEMM, we break the large MZI
structure into basic components, i.e., couplers and phase
shifters, and construct a compact photonic neural engine
with a butterfly-style circuit topology that significantly cuts
down the optical device usage and realizes similar func-
tionality (Gu et al., 2020b;c; Feng et al., 2022). Our pro-
grammable butterfly-style photonic circuits can realize cir-
cuit matrix multiply, Hadamard matrix multiply, and over
64% arbitrary matrices to cover a large enough matrix
space for high-accuracy machine learning tasks. We taped
out a programmable electronic-photonic neural chip at Ad-
vanced Micro Foundry, shown in Fig. 1. With specially
designed hardware-aware training methodologies, our chip
can implement ResNet-20 and reliably achieve >85% ac-
curacy on the CIFAR-10 image recognition dataset requir-
ing only 3-bit voltage control precision on the diagonal ma-
trix. We further evaluate our photonic chips on a Covid-
19 detection task based on chest X-ray images and realize
over 96% accuracy. A single 4×4 photonic tensor core can
achieve 225 TOPS/mm2 compute density and 9.5 TOPS/W
energy efficiency, which is orders-of-magnitude more pow-
erful than modern GPUs/TPUs, 2-4× more compact and
5-13× shorter in optical delay than the SoTA MZI-based
photonic tensor cores.

2.2 Ultra-Compact Photonic Neurons with
Customized Multi-Operand Devices

The compute density and energy efficiency of conventional
ML accelerators is typically upper-bounded by 1 multiply-
accumulate operation (MAC) per device. Moreover, the
system performance is often limited by the separate nonlin-
ear activation circuity. To break through this long-lasting
performance bottleneck, we propose to fuse tensor op-
erations and nonlinearity in a single device. For the
first time, we squeeze an 8×8 matrix multiplication into
a single 10×10 µm2 multi-operand microring resonator
(MORR) (Gu et al., 2021b; 2022a; Feng et al., 2023). We
fully leverage the physics principle of the microring res-
onators and apply multiple independent control signals to
the ring structure to achieve a vector-vector dot-product.
Besides, the transmission of the device naturally supports
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Figure 2: Our MORR-based photonic tensor core schematic and
tape-out (Gu et al., 2021b; 2022a). Compared to the standard
MRR weight bank, our MORR array achieves significant im-
provement in device usage, wavelength usage, compute density,
and energy efficiency.
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Figure 3: Our scalable ONN on-chip training framework
with in-situ gradient calculation (Gu et al., 2021d).

built-in reconfigurable nonlinearity. Such nonlinearity
can also be learned during training and dynamically re-
configured by tuning the device transmission, which sig-
nificantly boosts the versatility and expressivity of the de-
signed neurons. Our design can be scaled up by using ef-
ficient optimization strategies with structurally sparse ma-
trices and hardware-aware training recipes. Compared to
previous photonic tensor cores based on standard microring
(MRR) arrays (Tait et al., 2017; Liu et al., 2019), we can re-
alize comparable ML task performance with quadratically
fewer devices, 8× fewer wavelengths, 5.3× higher com-
pute density, 9.8× higher energy efficiency, and a 63.5% re-
duction in the simulated system energy consumption. Our
team taped out this MORR-based photonic neuron us-
ing AIM Photonics foundry, shown in Fig. 2. This new
design methodology implies an exciting research direc-
tion of neuromorphic computing using customized multi-
operand devices, which shows great potential to push the
compute density and efficiency to the extreme.

2.3 Self-Learnable Photonic Neural Accelerator with
Efficient On-Chip Training

Besides inference acceleration, future AI systems, es-
pecially the intelligent edge, require on-device self-
learnability. A self-learnable photonic computing system
can (1) address the robustness issues in situ and closes
the performance gap between simulation and physical de-
ployment; (2) help with data privacy with local learning
capability; (3) allow online learning and real-time adap-
tation on the edge with reduced communication cost; and
(4) significantly reduce training energy consumption. Pre-
viously, training of photonic neural networks is often of-
floaded to digital computers with rigorous noise simula-
tion, which is not efficient and usually suffers performance
degradation after deployment due to the simulation-reality
gap. Generic gradient-free optimization methods, e.g., evo-
lutionary algorithms and brute-force device tuning (Zhou
et al., 2020; Shen et al., 2017), have been applied to opti-
mize the photonic circuit parameters, which show limited
scalability and stability to handle large-scale ONN train-
ing tasks. The adjoint variable method (Hughes et al.,
2018a) was introduced to calculate the gradients in-situ us-
ing per-device optical field monitors. We propose a se-
ries of efficient ONN on-chip training protocols to break
through the training scalability and efficiency, assuming
the input/output observability without access to interme-
diate circuit states. We propose a series of on-chip train-
ing protocols FLOPS, (Gu et al., 2020a), MixedTrain (Gu
et al., 2021a), and L2ight (Gu et al., 2021d) to enable
self-learnable photonic AI chips with unprecedented train-
ing efficiency. Our FLOPS framework is a forward-only
zeroth-order optimization flow to enable on-chip training
of 1,000 MZIs with a built-in crosstalk handling mecha-
nism, which shows 10× higher training scalability and 4×
faster training speed than previous evolutionary and brute-
force device tuning methods. We further enhance the solu-
tion to a mixed-training framework MixedTrain (Gu et al.,
2021a). We partition the photonic circuits into passive and
active regions and only train a small subset of active de-
vices in each iteration to reduce parameter update costs. A
power optimization technique that prefers low-power pa-
rameters is embedded in our sparse zeroth-order coordinate
descent optimizer to reduce power consumption. We can
further boost the training scalability by 2.5× with over 90%
training energy cost reduction. As shown in Fig. 3, to en-
able million-parameter ONN on-chip training, we propose
a subspace optimization algorithm and a multi-level sparse
training method L2ight (Gu et al., 2022b) to enable in-situ
first-order partial gradient calculation and thus enable on-
chip training of million-parameter ONNs with 1,000× scal-
ability breakthrough and 30× training cost reduction, en-
abling efficient self-calibration, online task transfer, life-
long learning, and edge training applications.
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Figure 4: Neural operator-based Maxwell equation solving
framework for ultra-fast 2-D optical device simulation.

3 AI-ASSISTED INTELLIGENT PHOTONIC
HARDWARE DESIGN AUTOMATION

3.1 AI-Assisted Photonic Device Simulation

AI-assisted photonic device simulation is a critical step to
closing the loop of light-AI interaction. Besides using stan-
dard devices that already have a compact transfer matrix,
optical AI shows a trend to exploit customized photonic
structures for scalable optical computing (Gu et al., 2021c;
Sunny et al., 2021; Zhu et al., 2022; Wang et al., 2022).
Customized devices usually do not have analytical trans-
fer functions. Understanding their behavior heavily relies
on numerical simulators (Hughes et al., 2018b) to solve
Maxwell partial differential equations (PDEs) to obtain the
optical field distribution. The time-consuming optical sim-
ulation makes it intractable to perform large-scale outer-
loop optimization. Most prior work still uses conventional
NNs to predict several key properties based on a few de-
sign variables (Tahersima et al., 2019; Trivedi et al., 2019),
which is an ad-hoc function approximator without learn-
ing the light propagation property. Several works attempt
to leverage physics-informed NNs (PINNs) (Tang et al.,
2022; Chen et al., 2021; Lim & Psaltis, 2022) to predict
electromagnetic field solutions, which requires nontrivial
implementation efforts on Maxwell equations and bound-
ary conditions. To learn a family of parametric Maxwell
PDEs that models the joint probability of different PDE
variables, we propose a physics-agnostic light field pre-
diction framework NeurOLight, shown in Fig. 4. We
propose a joint PDE encoder with wave prior and masked
source modeling for compact PDE representation. Our
lightweight cross-shaped NeurOLight backbone design
achieves a superior balance between modeling capability
and parameter efficiency. In addition, our superposition-
based mixup technique significantly boosts the data effi-
ciency and model generalizability. Experiments show that
NeurOLight outperforms prior DNN models with 53.8%
better prediction fidelity and 44.2% less parameter cost,
serving as an over 200× faster surrogate model to the nu-
merical solvers in photonic device simulation.

Figure 5: Our automated PIC topology search framework
finds more compact designs than prior manual designs.

3.2 Automated Photonic Circuit Design Flow

Previous photonic tensor cores (PTCs) are all hand-
designed based on matrix decomposition theory (Shen
et al., 2017; Feng et al., 2022), which leaves a large de-
sign space unexplored with unsatisfying design quality and
lacks the adaptability to meet various device specifications
and hardware constraints. We observe strong demand for
an automatic, efficient, and flexible PTC design methodol-
ogy. However, PTC design search encounters unique and
difficult challenges. The PTC circuit topology has an ex-
tremely large and highly discrete search space, which casts
significant optimization difficulties that prevent the direct
application of any combinatorial optimization methods or
off-the-shelf neural architecture search methods.

To handle those challenges, we propose the first automatic
differentiable search framework for photonic tensor core
topology design, shown in Fig. 5. Our target is, given cer-
tain footprint constraints, we can efficiently search for a
photonic circuit topology with good matrix representabil-
ity, compact footprint, and high noise robustness. Our
ADEPT constructs a probabilistic photonic SuperMesh,
employs an augmented Lagrangian method to learn waveg-
uide connections, and adopts binarization-aware training
to search coupler locations. With a probabilistic footprint
penalty method, ADEPT integrates circuit area constraints
into SuperMesh training procedure to adapt the PTC to
various device specifications and footprint constraints. Ex-
tensive experiments show the superior flexibility of ADEPT
for automated PTC topology search adaptive to foundry
PDKs. The searched PTC design outperforms prior manual
designs with competitive expressiveness, 2×-30× smaller
footprint, and superior robustness. ADEPT opens a new
paradigm in photonic neurocomputing by "nurturing" pho-
tonic circuit design via AI and automation.

4 CONCLUSION

We present a holistic co-design solution to address the key
challenges in the photonic AI design stack and form a vir-
tuous cycle of photonics for AI and AI for photonic hard-
ware design automation. Through hardware customization,
we can significantly reduce the area cost and power con-
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sumption and boost the noise tolerance of photonic neural
networks. To enable self-learnable and adaptive photonic
AI accelerators, we introduce a series of scalable on-chip
training protocols that enable efficient learning on the edge
and adapt to changing and non-ideal environments. To fur-
ther maximize the design productivity and quality, we pre-
sented an AI-assisted photonic device simulation frame-
work and optimization-based automated photonic circuit
topology search flow to achieve beyond human design effi-
ciency and hardware performance.
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